Differential Equations

Homework 5

Due Feb. 28, 2024, 9:59 am

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Sketch (by hands) slope field of

$$
\frac{d y}{d t}=y
$$

2. Sketch (by hands) slope field of

$$
\frac{d p}{d t}=p(10-p)
$$

3. Separate variables and use partial fraction to solve the initial value problem

$$
\frac{d x}{d t}=x-x^{2}, x(0)=2
$$

4. Separate variables and use partial fraction to solve the initial value problem

$$
\frac{d x}{d t}=3 x(5-x), x(0)=8
$$

5. Separate variables and use partial fraction to solve the initial value problem

$$
\frac{d x}{d t}=3 x(x-5), x(0)=2
$$

6. Suppose that the fish population $P(t)$ in a lake is attacked by a disease at time $t=0$, with the result that the fish cease to produce (so that the birth rate is $\beta=0$) and the death rate δ (deaths per week per fish) is $k \frac{1}{\sqrt{P}}$. If there were initially 900 fish $(P(0)=900)$ in the lake and 441 were left after 6 weeks $(P(6)=441)$, how long did it take all the fish in the lake to die?
7. Suppose that the number of alligator $x(t)$ (with t in months) of alligators in a swamp satisfies the differential equation

$$
\frac{d x}{d t}=0.0001 x^{2}-0.01 x
$$

(a) If initially there are 25 alligators in the swamp, solve the differential equation to determine what happens to the alligator population in the long run $(t \rightarrow \infty)$
(b) Repeat part (a), except with 150 alligators initially.

